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Abstract

Quantifying interactions of organisms of the various trophic levels is 
important in understanding the dynamics of aquatic ecosystems. 
Concerning fish, as both ecologically and commercially important 
components of natural aquatic ecosystems, predicting their catch in 
relation to primary producers provides insight into sustainable 
management. This paper describes a novel model NPZfc, for 
encompassing nutrients, phytoplankton, zooplankton and fish, which 
can predict planktivorous fish catch. Unlike the existing models, 
which deal with the interactions within the system through 
mathematical equilibrium, the proposed model uses an artificial 
neural network (ANN) to automatically learn inter-dependencies 
between different related variables and predict the fish catch of a 
water body using a limited dataset. The efficiency of the model was 
enhanced by refining the input variables. Here biomass of plankton 
species population (phytoplankton and zooplankton) was specifically 
selected from feeding ecology studies of target fish species as input 
variable. The study involving two of the commercially important fish 
species, Etroplus suratensis and Nematalosa nasus, in Chilika lagoon 
showed that the model can predict with high accuracy from limited 
input data. The root mean square error (RMSE) is satisfactory, ranging 
from 12.55 t for N. nasus to 16.13 t for E. suratensis. Higher accuracy 
and better predictive ability with a smaller dataset make this ANN-
based NPZfc model promising for wider expansion with future 
research integrating multi-year and cross-system data to enhance 
the model’s transferability and predictive reliability across diverse 
environmental conditions.
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Introduction

The increasing demand for natural resources and accounting 
for their sustenance has constantly drawn attention to 
simulating the real world. Scientific models are widely used 
methods for substituting real-world systems into numerical 
relations. It allows experimenting with different inputs and 
analysing how the end product is affected. As aquatic 
ecosystems account for the highest natural resources, 
ecosystem models have been persistently used for their 
management (Slobodkin, 1960; Odum and Odum, 2000). 
The models range from using the simplest parameters like 
nutrients and plankton (Franks, 2002) to complex organisms 
including humans (Wandersee et al., 2012). Models have also 
been proposed for understanding inter and intra-interactions 
between abiotic and biotic components (Fulton, 2010; Rose 
et al., 2010). However, less effort has been taken to quantify 
this interactive understanding. Machine learning (ML) tools 
are known for their use in modelling patterns within data 
by automatically learning the parameters of the systems 
(Theodoridis and Koutroumbas, 1999; Pal and Mitra, 2004) 
including in ecological modelling (Reichstein et al., 2019). 
Artificial Neural Network (ANN) is one such ML tool trying to 
model biological neural networks (Yegnanarayana, 2009) and 
follows a simple principle of learning from examples without 
specifying any task-specific rules. As a result, ANN has been 
successfully used in systems where mathematical relations 
are hard to observe from the data (Kuo-lin et al., 1995). This 
motivated us to use ANN in the prediction of forage fish catch 
from NPZ values. 

The study was conducted in Asia’s largest coastal lagoon, 
Chilika, a Ramsar site. Fisheries in the lagoon contribute 71% 
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of the ecosystem’s economic value (Kumar, 2003) and generate 
significant international revenue (Mohanty et al., 2008). Chilika 
is well known for its biodiversity, reflected in its high ecosystem 
health grades based on water quality, fisheries, and biodiversity 
metrics (Pattnaik, 2013). The biodiversity assessment considered 
bird richness, benthic diversity, dolphin abundance, and 
phytoplankton diversity (Pattnaik, 2013). Previous studies have 
attempted to predict fish catch potential in Chilika using MLP 
models (Mishra and Ojha, 2021), but these did not account for 
nutrient flow through the food chain, a key aspect of ecosystem 
dynamics. Although interest in studying the trophic status of 
the lagoon and its relation to fisheries dates back decades, 
no substantial advancements have been made since the 
early work of Jhingran (1963) (Mohanty and Adhikary, 2013; 
Jhingran, 1963). No attempts have yet been made to model the 
complex relationships among nutrients, plankton, and fish in 
Chilika using a predictive approach that elucidates system 
dynamics. Developing such an ecological model can improve 
our understanding of dynamic changes in both biotic and abiotic 
components and assist in the management of the fisheries of 
the lagoon (Ghoroghi et al., 2023). In this study, we present 
a novel approach that leverages species-specific plankton 
biomass as input to an ANN-based model for predicting forage 
fish catch. Unlike currently available mathematical models, 
this is the first application of ANN to model NPZ interactions 
for forage fish prediction in Chilika Lagoon, focusing on the 
actual dietary composition of target fish species to enhance 
predictive accuracy. The findings of this study will serve as 
proof of concept for future work on ANN aimed at developing 
more generalised and robust predictive models across diverse 
ecological systems.

Material and methods

Study area

The study was conducted in Chilika Lagoon, located between 
19°28’and 19°54' N and 85°6' and 85°35' E on the east coast of 
India. This coastal lagoon exhibits estuarine characteristics 
due to the combined influence of precipitation, freshwater 
influx from the Mahanadi River distributaries, and seawater 
intrusion from the Bay of Bengal. Chilika is recognised as Asia’s 
largest brackish water lagoon, supporting rich biodiversity and 
significant fisheries. The lagoon’s dynamic salinity gradients 
and ecological diversity make it an ideal setting for studying 
nutrient–plankton–fish interactions.

Field sampling and plankton biomass 
estimation

Simultaneous nutrient and microplankton samples were 
collected at monthly intervals using standard methods (Eaton 

et al., 2005). A 20-micron net was used to collect microplankton 
samples, and their biomass (mgC/l) was estimated using 
their biovolume. Biovolumes, estimated based on geometric 
shapes, were then converted to carbon in picograms following 
Menden-Deuer and Lessard (2000).

The formulae used for the estimation of the biovolume are 
the following.

Diatoms: pgC/cell = 0.288 * volume0.811

Other protist plankton groups: pgC/cell = 0.216 * volume0.939

Microplankton species confirmed from the feeding ecology 
analysis of the target fish species (Mukherjee et al., 2016, 
2017) were exclusively used for calculating input variable 
(microphytoplankton and microzooplankton) biomass.

Fish catch data

Planktivorous fish species catch data corresponding to the 
sampling period were obtained from the Chilika Development 
Authority through a concurrent study. The catch was measured 
in tonnes and used as the dependent variable in the model.

Artificial Neural Network modelling

Model Architec ture and Training: The model NPZfc 
approached the use of three variables: viz; nutrients (N), 
microphytoplankton (P), and microzooplankton (Z) to predict 
catch of the planktivorous fish species (fc) in tonnes. A 
supervised machine learning technique, the ANN, was used to 
develop a predictive model. The ANN consisted of three input 
neurons (nutrients, microphytoplankton, microzooplankton), 
one hidden layer with three neurons, and one output neuron 
representing the predicted fish catch (Fig. 1). The three hidden 
neurons were selected by hyperparameter tuning with 2 to 
10 hidden neurons. We selected three neurons as it provided 
the best possible results. Supplementary bias nodes were 
added to the hidden and output layers.

The state of neurons was calculated as the weighted sum 
of received signals from the preceding layer as yk = f0 {bk 
+Sjwjk * fh(bj + wij * xi)}

where, yk = output signals, xi = input signals, wij = weight 
between input neuron i to hidden neuron j, bj = bias associated 
with the hidden layer, bk = bias associated with output layer, 
f0 = activation function for output layer and fh = activation 
function for the hidden layer.

The activation function of a neuron defines the output of 
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that neuron based on the weighted sum of its inputs; that 
is, it transforms the neuron’s activation level into an output 
signal. Among the many activation function types (Bishop, 
1995), the hyperbolic tangent function (tanh) was used for 
both the hidden and output layers in this study.

The tanh activation function is tanh (x) = 2 * σ (2x) – 1 where 
σ (x) is the sigmoid function.

The range of the tanh function is [-1, 1] which provides a stronger 
gradient. The error function used here with back-propagation 
was the least square error. The number of hidden nodes was 
optimized by testing networks with 1 to 10 nodes, selecting 
the configuration with the best statistical performance. Only 
one hidden layer was used, as it provided acceptable results, 
consistent with previous findings (Kurkova, 1992).

Normalisation and statistical evaluation: The dataset was 
split into training (80%) and testing (20%) samples, randomly 
selected for each of the ten simulations. All input variables 
[nutrients (nitrate-N in ppm), microphytoplankton (units/l), 
and microzooplankton (number/l)] and output [fish catch (t)] 
were normalised using a natural logarithm transformation. 
A ln(x) transformation was applied to reduce skewness and 
bring values closer to a normal distribution. Output values of 
the test set were de-normalised before statistical analysis. All 
machine learning algorithms were simulated and analysed 
in Mathematica 11 (using inbuilt functions), on an Intel Core 
i5 processor with 12 GB RAM using Linux OS. Fig. 2. shows 
the detailed steps of the process involved.

Results

The model generated considered the transfer of energy at each 
trophic level in terms of biomass. The total microphytoplankton 
carbon biomass was calculated as 2.96×10-3 mgC/cell and 
microzooplankton was calculated as 1.28 × 10-3 mgC/cell. 
The monthly average microphytoplankton abundance of 
the species measured for biovolume ranged from 20 units/l 
in December to 19711 units/l in April and microzooplankton 
ranged between 1 no./l in October and 1992 no./l during May 
(Table 1). The biomass trend showed by microzooplankton 
followed that of microphytoplankton, wherein the gradual 

Fig. 2. Steps followed in the NPZfc model

Fig. 1. Neural network design of the model, with three input nodes and one 
hidden layer of three nodes. N = Nutrients, P = Microphytoplankton, Z = 
Microzooplankton, F = Fish. b1, b2, b3 and b4 are the biases obtained from 
each node

Table 1. Monthly average abundance of plankton enumerated for biovolume

Abundance Feb Mar Apr May Jun Aug Sep Oct Nov Dec

Microphytoplankton (Units/1) 1458 8082 19711 3856 383 279 3259 37 91 20

Microzooplankton (no./1) 16 11 660 1992 99 18 695 1 9 14
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increase in phytoplankton from February to April was followed 
by an increase in zooplankton from March to May (Fig. 3). The 
transfer of this biomass to the next trophic level was studied 
through the feeding ecology of two important forage fishes of 
Chilika viz. E. suratensis (Mukherjee et al., 2017) and N. nasus 
(Mukherjee et al., 2016). E. suratensis catch gradually increased 
and reached its peak in August when both the plankton groups 
showed a drop in biomass (Fig. 3). A Further decline in the 
fish catch of September showed a corresponding increase in 
biomass of both groups of plankton. The catch trend of N. nasus 
also showed a similar relation to that of E. suratensis, wherein 
its catch increased with a decrease in plankton abundance 
(Fig. 3). It is only during April that N. nasus catch increased 
with microphytoplankton and a corresponding decrease in 
microzooplankton abundance. This fish species was found 
to have a very specific need for microzooplankton during the 
month which is discussed in detail by Mukherjee et al. (2016). 
The fishing effort in the lagoon did not exhibit measurable 
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Fig. 3. Monthly variation in biomass of plankton, E. suratensis and N. nasus

Table 2. Input data of E. suratensis used for training and testing the model

Months Feb Mar Apr May Jun Aug Sep Oct Nov Dec

Nitrate (mg/l) 0.35 0.44 0.14 0.03 0.49 0.57 0.45 0.05 0.47 1.03

Microphytoplankton (mgC/l) 4.33 23.99 58.5 11.45 1.14 0.83 9.68 0.11 0.27 0.06

Microzooplankton (mgC/l) 0.02 0.01 0.85 2.56 0.13 0.02 0.89 0 0.01 0.02

E. suratensis catch (t) xx 18.54 37.62 33.42 35.06 45.28 34.74 37.64 23.82 32.42

N. nasus catch (t) 42.26 37.41 61.26 46.66 44.07 47.45 44.72 47.31 43.73 71.54

Table 3. Goodness of fit E. suratensis model assessed through statistical tests

Test sample 1 2 3 4 5 6 7 8 9 10

Predicted (t) 44.93 33.81 21.37 42.17 59.68 15.19 62.78 19.20 49.14 25.84

Actual (t) 33.42 34.7 45.3 34.7 32.4 18.5 32.4 33.4 35.1 34.7

Test sample 11 12 13 14 15 16 17 18 19 20

Predicted (t) 16.11 63.48 8.00 34.43 6.21 17.76 20.09 14.89 22.11 17.41

Actual (t) 18.54 35.1 37.6 35.1 37.6 37.6 18.5 37.6 34.7 18.5

RMSE (t) 16.13 ± 2.72

MAE 0.58

change during this period. Thus, the possibility of plankton 
growth based on the available nutrients of the environment 
and the corresponding growth of planktivorous fish using them 
as food could be established for both species.

Table 2 provides the values of the predictor or input variables 
of the model used along with the fish catch. It comprised 
10 months of sampling data with nitrate (mg/l) as nutrient, 
microphytoplankton (mgC/l), microzooplankton (mgC/l) 
and catch (t) of planktivorous fishes the E. suratensis and 
N. nasus. The predicted catches (i.e., the output from the 
model) with the corresponding actual catches of all of the 
test samples are given in Fig.4a and 4b for E. suratensis and 
N. nasus respectively. Corresponding numerical values are 
mentioned in Tables 3 and 4. In the case of E. suratensis, 13 
values (65%) remained higher and 7 lower (35%) predictions. 
Of these 65% higher predicted values, three values were 
almost perfect predictions, (0.93 t, 0.63 t, 1.13 t) remaining 
within a difference of 1t. For N. nasus, the higher and lower 
predicted values remained equal in percentage (50%), of 
which four values were near perfect (1.56 t, 1.71 t, -1.71 t and 
1.93 t). The values for all 20 samples are given in Table 3 for 
E. suratensis and Table 4 for N. nasus for reference.

Root mean square errors (RMSEs) were calculated to find 
the variations amongst the actual and predicted values of 
fish catch of both species. Root mean square errors are more 
sensitive to occasional very large errors in predicted values 
as they tend to square the errors in the calculations. The mean 
absolute error (MAE) was also used to complement the idea 
of goodness of fit. The error values were also converted into 
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percentages to better visualise the differences. The RMSE 
values of E. suratensis were16.13± 2.72 and MAE 0.58 t. The 
RMSE value of N. nasus was 12.55 t±1.26 and MAE was 0.99 t.

Discussion

The production of an ecosystem depends upon the energy 
flow through each trophic level, making fish production as 
an end product inherently dependent on its source of energy. 
Chilika Lagoon supports high biodiversity and a complex 
trophic chain, with plankton dynamics exhibiting distinct 
spatio-temporal variations (Srichandan et al., 2015; Mukherjee 
et al., 2018). These variations have a considerable effect on the 
forage fish population, which in turn has motivated ecologists 
to develop compartment models (Kumar and Kumari, 2015; 
Franks, 2002). The present study explored the potential of 
linking plankton dynamics and feeding ecology to develop 
a predictive fish catch model.

A detailed study of the feeding ecology of N. nasus and 
E. suratensis (Mukherjee et al., 2016, 2017) has established 
them as planktivorous fishes. This relationship was used 
to build a model that traces energy transfer from nutrients 
to microphytoplankton, then to microzooplankton, and 
finally to planktivorous fish. The relationship between 
these four compartments provided a platform to build 
a predictive model, which we termed the NPZfc model 
(Nutrient- Phytoplankton- Zooplankton- fish catch), using 
artificial neural networks (ANNs).

Traditional mathematical NPZ models are effective for 
predicting aquatic system dynamics that are otherwise 
hard to measure (Franks, 2002; Kumar and Kumari, 2015). 
However, our approach focused on predicting and quantifying 
the final outputs based on related inputs, leveraging the 
strengths of statistical and machine learning methods. While 
various species of forage fishes are confirmed as specialised, 
preferential, or generalised feeders (Mukherjee et al., 2016, 
2017), using the entire plankton community as input would 
be inappropriate for accurate modelling.

To address this, we adopted a diet-specific modelling 
approach. Out of the 233 plankton species recorded in 
Chilika (Mukherjee et al., 2018), only the biomass of the 85 
species recorded from the diets of the target fish species 
was used as input for the model. This contrasts with generic 
environmental modelling, which typically uses total plankton 
biomass as an input variable.

The ANN-based NPZfc model proved effective at capturing the 
nuanced relationships between environmental variables and 
fish catch, even with relatively small observational datasets 
(Pasini, 2015). Neural networks have previously shown efficacy 
in modelling phytoplankton production (Scardi, 1996; Mattei 
et al., 2018), succession (Olden, 2000), and bloom prediction 
(Kang et al., 2012), as well as in relating environmental variables 
to fish catches (Iglesias et al., 2004; Gutie´rrez-Estrada et al., 
2009). The lake-resident E. suratensis, being non-migratory, is 
particularly well-suited for modelling based on environmental 
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Fig. 4. Predicted and actual catch of fishes (a) E. suratensis and (b) N. nasus generated from 20 test sets used for validation of the model

Table 4. The goodness of fit for N. nasus model, assessed through statistical tests

Test sample 1 2 3 4 5 6 7 8 9 10

Predicted (t) 41.30 45.89 44.92 46.56 42.97 45.44 40.55 42.45 46.02 40.32

Actual (t) 61.26 47.45 43.73 44.72 37.41 43.73 42.26 47.31 44.07 42.26

Test sample 11 12 13 14 15 16 17 18 19 20

Predicted (t) 46.46 65.77 70.86 48.43 45.43 47.14 45.44 69.95 69.19 45.09

Actual (t) 47.45 37.41 44.72 47.45 47.45 46.66 43.73 71.54 46.66 44.72

RMSE (t) 12.55± 1.26

MAE 0.99

RMSE = Root Mean Square Error MAE = Mean Absolute Error
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variables (Fig. 3). N. nasus, although migratory, has specific 
dietary preferences that also support accurate prediction (Fig. 
3). Thus, our results indicate that predictive models based 
on such parameters require a detailed catch structure of the 
target fish species and are best suited for resident species 
of an ecosystem.

The model showed a good fit with very small data feeds 
for both fish species. For E. suratensis, the predicted catch 
values matched the actual catch values for 45% of the test 
dataset, with exact matches for 25%. The RMSE value was 
16.13 t. For N. nasus, 55% of predictions were within about 1 
t of the actual catch, and the RMSE was even lower at 11.14 t 
(2%). Overall, N. nasus showed slightly better predictability 
than E. suratensis, likely due to its more specialised plankton 
feeding habits. E. suratensis on the other hand is known 
for its occasional omnivorous feeding behavior (Emmanuel 
et al., 2019) leading to slightly lower predictability with the 
model’s focus on diet-specific plankton input. The sensitivity 
analysis indicated that nutrients and microzooplankton were 
the most influential features for predicting E. suratensis catch 
whereas microphytoplankton were comparatively the more 
influencing feature for N. nasus catch.

When compared with Support Vector Regression (SVR) that 
generated MAE of 6.29 for N. nasus and 12.12 for E. suratensis, 
the proposed ANN-based NPZfc model demonstrated 
strong predictive performance for both species, indicating 
that the relationships established between nutrients, 
microphytoplankton, microzooplankton, and planktivorous 
fish were appropriate for developing a predictive model of fish 
catch. Thus, the proposed model offers a robust alternative to 
traditional ML models. As the model is trained and evaluated 
exclusively on data from the Chilika Lagoon, its potential to 
perform reliably across other ecosystems, or under markedly 
different years or seasonal regimes within the same system, 
warrants further exploration.

An ecosystem that supports the livelihoods of more than 0.2 
million people (Pattnaik , 2013) highlights the importance 
of fish catch prediction as a tool for sustainable fisheries 
management. Accurate predictions can inform not only 
ecological and ecosystem management but also socio-
economic planning. Since planktivorous fish serve as prey 
for higher trophic levels, the model can be adapted to predict 
catches of carnivorous fish by analysing prey species and 

their corresponding catch. This modelling framework is flexible 
and can be modified for species-specific or holistic approaches 
to predicting related fish species, provided that the requisite 
ecological data are available. Beyond fish quantification, the 
NPZfc model can be applied to predict any environmental 
process with well-defined and measurable parameters.

Ablation study

To systematically optimise and interpret the NPZfc ANN 
architecture for predicting planktivorous fish catch, we 
conducted a series of ablation studies targeting three key 
model components: activation function, input feature selection, 
and the number of hidden neurons.

Effect of different activation functions: We evaluated the effect 
of different activation functions on model performance by 
training separate models using the hyperbolic tangent (tanh), 
Rectified Linear Unit (ReLU), and Sigmoid functions for both 
hidden and output layers. Performance was compared using 
the root mean square error (RMSE) for both target species, 
N. nasus and E. suratensis. The tanh activation function 
consistently outperformed both ReLU and Sigmoid across 
both species. For N. nasus, RMSE values were 12.55 (tanh), 
13.774 (ReLU), and 12.9216 (Sigmoid). For E. suratensis, RMSEs 
were 16.13 (tanh), 20.568 (ReLU), and 18.8925 (Sigmoid). 
Thus, tanh was selected for all layers due to its superior 
predictive accuracy.

Hidden neuron numbers: To identify the optimal model 
complexity and avoid overfitting, we systematically varied 
the number of hidden neurons in the single hidden layer 
from 1 to 10. For each configuration, the model was retrained 
and evaluated using RMSE. Model performance varied with 
the number of hidden neurons. For E. suratensis, RMSE was 
lowest at 11.79 with 3 hidden neurons, increasing slightly with 
more neurons. These results suggest that 3 hidden neurons 
provide optimal model complexity, balancing predictive 
accuracy (Table 5).

Input feature sensitivity

To determine the relative importance of each input variable 
(nutrients, microphytoplankton, microzooplankton), we 
performed a leave-one-feature-out sensitivity analysis. For 
each run, one feature was omitted from the input set, the model 

Table 5. Root Mean Square Error (RMSE) of the NPZfc model for E. suratensis and N. nasus as a function of the number of hidden neurons in the single hidden layer

No of hidden neurons 1 2 3 4 5 6 7 8 9 10

E. suratensis 13.56 13.42 11.79 13.6 13.87 13.51 14.03 13.81 13.81 13.49

N. nasus 22.05 13.42 12.67 12.43 18.11 15.25 14.6 16.17 14.64 13.29
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was retrained, and the resulting RMSE was compared to that 
of the full model. This approach quantifies the contribution 
of each feature to predictive accuracy. The analysis for 
N. nasus produced RMSEs of 13.71 (nutrient omitted), 13.49 
(phytoplankton omitted), and 13.90 (zooplankton omitted). 
For E. suratensis, the corresponding RMSEs were 19 (nutrient 
omitted), 17.28 (phytoplankton omitted), and 19 (zooplankton 
omitted). These results indicate that, for both species, all three 
features contribute to model performance, with zooplankton 
being most critical for N. nasus and phytoplankton for 
E. suratensis.

This study, thus, underscores the importance of machine 
learning, particularly ANNs, in developing ecological models 
capable of predicting outcomes, measuring changes, and 
revealing key biological relationships through automated 
learning. As classical neural network methods have provided 
promising results, more advanced deep learning techniques 
may further improve fish catch predictions. With the advent 
of advanced sensors (Dyomin et al., 2021; Yang and Compton, 
2023), larger and more detailed biomass datasets can be 
collected to support these data-intensive AI models, enabling 
even more accurate and robust predictions. Since the model 
is trained and evaluated solely on data from the Chilika 
Lagoon, its robustness across different ecosystems remains 
untested. This currently restricts the model’s generalizability 
and limits its immediate applicability for broader ecological 
or fisheries management purposes. Future efforts should 
focus on incorporating multi-year and cross-system data 
to evaluate the model’s transferability and strengthen its 
predictive confidence under varying environmental contexts.
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